China Professional Vertical Slewing Gear for Single Axis PV, Cpv Tracker hypoid bevel gear

Product Description

VH7 for 60-96pcs panels single axis horizontal single axis solar tracking system

It is advised to mount the slewing drives referring to attached drawing upside in solar applications for better protection.For other applications, the mounting directions shall be based on the evaluation of the protection level and it shall be better for better protection.

It is advised to mount the slewing drives upside down on the azimuth axis in solar applications for better protection and add protection for the elevation axis.For other applications, the mounting directions shall be based on the evaluation of the protection level and it shall be better for better protection.

For a single-axis tracker, the rotating axis is normally the vertical axis which moves the collector east to west during the day.

With the rotation on the vertical axis, the collector maintains a constant clearance from the ground. The collector is titled from the ground plane by an amount approximately equal to the latitude, and the collector is turned to the east in the morning and slowly turns to face west in the evening.

After sunset, active trackers reset to the east to be ready for the following day, but as mentioned previously, passive trackers require sunlight to reset.

An array of single-axis trackers that are driving flat panels. The vertical axis is the only 1 that tracks.

 

Model

VH7

IP

IP6

Brand

Coresun Drive

Type

Vertical

Material

42CrMo,50Mn

Output Torque

6.3KN.m

Tilting Moment Torque

10KN.m

Holding Torque

45KN.m

Static Axial Rating

350KN

Static Radial Rating

120KN

Square Tube

92mm

Motor

24VDC or 220VAC, 380VAC

Gear Ratio

60:1

Efficiency

40%

 

 

About Us

Coreun Drive slewing drive products are high-quality slewing drive products developed with independent technology and technology to meet market needs. CHINAMFG Drive has a full range of mature slewing drive products with multiple specifications and the ability to custom design and manufacture such products for customer needs. For different applications requiring low-speed heavy loads, high-speed medium loads and high-speed light loads, Khanwang can provide corresponding products or solutions.

Coresun Drive’s worm-gear slewing drive includes 2 categories: cylindrical worms and envelope worms. Cylindrical worms are suitable for medium-speed and heavy-duty applications, and envelope worms are suitable for low-speed, heavy-duty and high-precision applications. The worm-gear slewing drive is self-locking , In the field of power sports, it can provide basic safety guarantee and further simplify the overall design of the equipment. It is a superior industrial accessory.

Coresun Drive’s enveloping worm rotary drive is entirely derived from its own technology, the processing technology is unique, and the processing process is fully numerically controlled. Therefore, the product quality is extremely controllable, the manufacturing accuracy is far higher than that of similar products, and the performance of the finished product is also Far higher than other similar products. In addition to the final product, the envelope worm and the matching worm gear can be flexibly optimized and configured according to user needs. According to different usage requirements and environments, the Khan King Envelope Worm can be made of a variety of materials and can be subjected to various specific heat treatments to make the product more durable in terms of user needs. For field environments such as solar and wind energy applications that require long-term maintenance-free operation, this type of rotary drive product is the best choice.
 

(1) We have first-class testing equipment to detect bearing various data parameters and control the quality of the bearing.

Whenever bearings must first detected whether the quality is qualified and the unqualified bearing will be eliminated directly.So we can get the trust of a large customer, and supply them for several years.

(2) We have our own R & D capabilities, to help customers solve the problem of non-standard bearings.We can also according to customer requirements change their own mark.

(3) price, our manufacture ensure that our prices across China are quite competitive. It is better for you to compare prices and quality among suppliers.

 Advange

1.Mainly apply to the relatively high condition for high requirement for dustproof, rain-proof and anti-corrosion occasion.
2.Precision grade IP65
3.Different motors(AC, DC, Hydraulic) can be designed according to customer’s requirement.
4.We can provide different colors for customer
5. We can make a change or design new models for customer

 Products Photo


 

Products Application

Coresun Drive slewing drive VH7 is a good solution to 60-96pcs single axis solar tracker design.
The production is widely export to USA,Canada,Germany,Spain,France,Poland,Turkey,Korea,Australia,South Africa,India, Brazil,Chile…

Products Certificate

Our slewing drive gear motor have arroved by CE and ISO2001 certificate.

CONTACT US

It is sincerely looking CHINAMFG to cooperating with you for and providing you the best quality product & service with all of our heart!

Feature: Corrosion-Resistant
Step: Double-Step
Openness: Closed
Installation: Vertical
Transmission Form: Worm
Type: Single-Row Ball
Customization:
Available

|

Customized Request

worm gear

How does a worm gear impact the overall efficiency of a system?

A worm gear has a significant impact on the overall efficiency of a system due to its unique design and mechanical characteristics. Here’s a detailed explanation of how a worm gear affects system efficiency:

A worm gear consists of a worm (a screw-like gear) and a worm wheel (a cylindrical gear with teeth). When the worm rotates, it engages with the teeth of the worm wheel, causing the wheel to rotate. The main factors influencing the efficiency of a worm gear system are:

  • Gear Reduction Ratio: Worm gears are known for their high gear reduction ratios, which are the ratio of the number of teeth on the worm wheel to the number of threads on the worm. This high reduction ratio allows for significant speed reduction and torque multiplication. However, the larger the reduction ratio, the more frictional losses occur, resulting in lower efficiency.
  • Mechanical Efficiency: The mechanical efficiency of a worm gear system refers to the ratio of the output power to the input power, accounting for losses due to friction and inefficiencies in power transmission. Worm gears typically have lower mechanical efficiency compared to other gear types, primarily due to the sliding action between the worm and the worm wheel teeth. This sliding contact generates higher frictional losses, resulting in reduced efficiency.
  • Self-Locking: One advantageous characteristic of worm gears is their self-locking property. Due to the angle of the worm thread, the worm gear system can prevent the reverse rotation of the output shaft without the need for additional braking mechanisms. While self-locking is beneficial for maintaining position and preventing backdriving, it also increases the frictional losses and reduces the efficiency when the gear system needs to be driven in the opposite direction.
  • Lubrication: Proper lubrication is crucial for minimizing friction and maintaining efficient operation of a worm gear system. Inadequate or improper lubrication can lead to increased friction and wear, resulting in lower efficiency. Regular lubrication maintenance, including monitoring viscosity, cleanliness, and lubricant condition, is essential for optimizing efficiency and reducing power losses.
  • Design and Manufacturing Quality: The design and manufacturing quality of the worm gear components play a significant role in determining the system’s efficiency. Precise machining, accurate tooth profiles, proper gear meshing, and appropriate surface finishes contribute to reducing friction and enhancing efficiency. High-quality materials with suitable hardness and smoothness also impact the overall efficiency of the system.
  • Operating Conditions: The operating conditions, such as the load applied, rotational speed, and temperature, can affect the efficiency of a worm gear system. Higher loads, faster speeds, and extreme temperatures can increase frictional losses and reduce overall efficiency. Proper selection of the worm gear system based on the expected operating conditions is critical for optimizing efficiency.

It’s important to note that while worm gears may have lower mechanical efficiency compared to some other gear types, they offer unique advantages such as high gear reduction ratios, compact design, and self-locking capabilities. The suitability of a worm gear system depends on the specific application requirements and the trade-offs between efficiency, torque transmission, and other factors.

When designing or selecting a worm gear system, it is essential to consider the desired balance between efficiency, torque requirements, positional stability, and other performance factors to ensure optimal overall system efficiency.

worm gear

Can worm gears be used in both horizontal and vertical orientations?

Yes, worm gears can be used in both horizontal and vertical orientations. Here’s a detailed explanation of the suitability of worm gears for different orientations:

1. Horizontal Orientation: Worm gears are commonly used in horizontal orientations and are well-suited for such applications. In a horizontal configuration, the worm gear’s weight is primarily supported by the bearings and housing. The lubrication and load-carrying capabilities of the gear design are optimized for horizontal operation, allowing for efficient power transmission and torque generation. Horizontal worm gear applications include conveyor systems, mixers, mills, and many other industrial machinery setups.

2. Vertical Orientation: Worm gears can also be used in vertical orientations, although there are some additional considerations to address in such cases. In a vertical configuration, the weight of the worm gear exerts an axial force on the worm shaft, which can introduce additional load and affect the gear’s performance. To ensure proper operation in a vertical orientation, the following factors should be considered:

  • Thrust load handling: Vertical orientations impose a thrust load on the worm gear due to the weight of the gear and any additional external loads. The gear design should be capable of handling and transmitting this thrust load without excessive wear or deformation. Proper bearing selection and lubrication are crucial to support the axial load and maintain optimal performance.
  • Lubrication: Lubrication becomes even more critical in vertical worm gear applications. Adequate lubrication ensures proper lubricant film formation to minimize friction, reduce wear, and dissipate heat generated during operation. Careful consideration should be given to the lubricant type, viscosity, and lubrication method to ensure effective lubrication, particularly in the upper parts of the gear where lubricant distribution may be more challenging.
  • Backlash control: In vertical orientations, gravity can cause the load to act on the gear in the opposite direction, potentially leading to increased backlash. Proper gear design, including tooth geometry and clearance adjustments, can help minimize backlash and ensure precise motion control and positional stability.
  • Bearing selection: The choice of bearings becomes crucial in vertical worm gear applications. Thrust bearings or combinations of thrust and radial bearings may be required to handle the axial and radial loads effectively. Bearings with appropriate load-carrying capacities and stiffness are selected to ensure smooth operation and minimize deflection under vertical loads.
  • Sealing: Vertical orientations may require additional sealing measures to prevent lubricant leakage and ingress of contaminants. Proper sealing and protection mechanisms, such as seals or gaskets, should be implemented to maintain the integrity of the gear system and ensure reliable operation.

In summary, worm gears can be utilized in both horizontal and vertical orientations. However, certain considerations related to thrust load handling, lubrication, backlash control, bearing selection, and sealing should be taken into account for vertical applications. By addressing these factors appropriately, worm gears can effectively transmit power and torque, whether in horizontal or vertical configurations.

worm gear

Can you explain the concept of worm and worm wheel in a worm gear?

In a worm gear system, the worm and worm wheel are the two primary components that work together to transmit motion and power. Here’s an explanation of the concept:

Worm:

The worm is a cylindrical shaft with a helical thread wrapped around it. It resembles a screw with a spiral groove. The helical thread is called the worm’s thread or worm thread. The worm is the driving component in the worm gear system.

When the worm rotates, the helical thread engages with the teeth of the worm wheel, causing the worm wheel to rotate. The angle of the helical thread creates a wedging action against the teeth of the worm wheel, resulting in a high gear reduction ratio.

One important characteristic of the worm is its self-locking nature. Due to the angle of the helical thread, the worm can drive the worm wheel, but the reverse is not true. The self-locking feature prevents the worm wheel from backdriving the worm, providing a mechanical brake or holding position in the system.

The worm can be made from various materials such as steel, bronze, or even plastics, depending on the application requirements. It is often mounted on a shaft and supported by bearings for smooth rotation.

Worm Wheel:

The worm wheel, also known as the worm gear, is the driven component in the worm gear system. It is a gear with teeth that mesh with the helical thread of the worm. The teeth on the worm wheel are typically helical and cut to match the angle and pitch of the worm’s thread.

As the worm rotates, its helical thread engages with the teeth of the worm wheel, causing the worm wheel to rotate. The rotation of the worm wheel is in the same direction as the worm’s rotation, but the speed is significantly reduced due to the high gear reduction ratio of the worm gear system.

The worm wheel is usually larger in diameter compared to the worm, allowing for a higher gear reduction ratio. It can be made from materials such as steel, bronze, or cast iron, depending on the application’s torque and durability requirements.

Together, the worm and worm wheel form a compact and efficient gear system that provides high gear reduction and self-locking capabilities. They are commonly used in various applications where precise motion control, high torque, and compactness are required, such as elevators, steering systems, and machine tools.

China Professional Vertical Slewing Gear for Single Axis PV, Cpv Tracker hypoid bevel gearChina Professional Vertical Slewing Gear for Single Axis PV, Cpv Tracker hypoid bevel gear
editor by CX 2023-10-12